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Abstract    This report describes an approach for encoding and decoding of discrete information about basic 
states at the input of operators in the phase of their outputs. The decoding is considered as a special case of 
interference with four different forms of decoding that reflect the classes of identity and negation operators. If an 
operator decode another, he is able to read the information encoded in the phase space, and reduce the 
encoded bits to state or its negation. Decoding relationships have been developed both as regards the 
parameters of the operator and in terms of Boolean functions encoding. This further leads to an increase in the 
level of abstraction. The approach of the proposed system differs from previous discussions of phase encoding, 
making encoding a substantial part of all operators so that the correct encoded information can be determined 
from the parameters of the operators.  
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1. INTRODUCTION 
This research is focused on a summary of the primitive, elementary quantum operators and therefore is closely 
linked with the work, carried out by Barenco, etc., on elementary circuits and establishing universality of single 
qubit and two qubit operators [1, 2]. This research differs from previous works on the primitive quantum 
operators in that its goal is not universality, but systematization. Although the possibility for constructing as 
much as possible different circuits from a small number of operators is important, the focus here is shifted on 
the possibility of the operator to express another logic, operating in the circuit, and abstract quantum operators 
in respect of this logic. Given that the single qubit operators are a major component of the standard set of 
universal operators for quantum calculations, then they are the primary focus of this research. The developed by 
the author formalized qubit operator [6, 7, 8] presented in this research uses the decomposition of the 
phase/amplitude, which characterizes the operators, presented in this report. The formalized operator allows 
operation with single qubit operators as linear combinations of the operator for identity and the operator for 
negation. In such a case, a single qubit operator either negates, identifies, or performs partial identity / 
negation. The relative weights of each basis operator are presented in relation to the probability distribution, 
which they extract from the single qubit basic states, unlike the more common probability amplitude. Something 
more, the different phases of the basis operators are logically formalized, in order to ensure a unitary operator. 
This formalization of the phase space shows a clear separation between the operators, formed by intensional 
basis, and the operators, formed by non-intensional basis. To increase the abstraction, the composition of the 
basis operators is developed entirely in terms of the operator parameters.  

 
The formalization of operators is used for development of a system for phase encoding and decoding with single 
qubit operators.  In this system the operators encode some function of the basic states, on which they operate, to 
the phase of their result. Then the decoding is examined as a special case of interference of the operators. If one 
operator decodes another one, it is able to "read" the information encoded in the phase space, and to decrease 
the bit to the encoded state or its logic negation. The decoding relationships are developed both in respect of the 
operator parameters, as well as in respect of the Boolean encoding functions. By looking at the decoding 
relationships of the encoding functions, it is possible to be determined the exact way in which an interference is 
generated, and any residual encoding, remaining from the decoding.  
 
 
For the parameters а ∈ [0, 1] and s, t, v ∈ ℂ с ⌊𝑠⌋ = |𝑡| = |𝑣| = 1, U parametrizes a single qubit operator such 
that 

U (a; s; t; v) = � √𝑎 𝑠√1 − 𝑎
𝑡√1 − 𝑎 𝑣√𝑎

�   (1.1) 

It is assumed, that this operator is sufficient to capture single qubit operators, but later can be seen, that the lack 
of ability for determination of the phase of the upper left point in the matrix reduces the expressiveness of the 
form. The operator, given in equation 1.2, is designed to maximize particular restriction of the modification in 
the Grover’s search.  
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�√1− 𝑎 √𝑎
√𝑎 −√1 − 𝑎

�   (1.2) 

In this research the approach to the operators differs from that one of Grover in the fact that it is tried to be 
developed a structure, which expresses all operators, and not just a subset, related with a certain problem or 
algorithm. Grover shows this semi-general form in the context of a modified search. Of interest is the finding of a 
general form, which could capture all single qubit operators. In this work are separated the phase and the 
amplitude components of the operator. This separation is made in order to be implemented a logic with more 
classic understandings of probabilities, while highlighting and identifying the ways in which the changes in the 
phase generate different interference patterns. 
The next iteration of the formalized operator is very similar to the final summary, presented in this report. It 
includes a parameter in the fourth phase and means the phase parameters as a set ℙ = �𝜙0,𝜙1, 𝜙2, ,𝜙3�, such 
that 𝜙𝑖 = 𝑒𝑖𝜓𝑖  at 0 ≤ 𝜓𝑖 < 2π . 

U (a; ℙ) = � 𝜙0√𝑎 𝜙1√1 − 𝑎
𝜙2√1− 𝑎 𝜙3√𝑎

�   (1.3) 

In order to guarantee that U (a, ℙ) is unitary, it is necessary the operators to belong to one of the two classes, 
based on their phase parameterization. 

1. Class I: The phase of the points in one column are equivalent, while the phases of another 
column are not. 
2. Class II: For each 𝜙𝑖 phase of the adjacent points differs by a factor of kπ for odd k.  

 
The implemented in this work U (a,ℙ) parameterization includes a summary of two qubit controlled operators. 
The summary of the controlled operators uses two formalized single qubit operators, which are conditionally 
applied to the target qubit, based on the value of the control qubit. At this stage, a simple set of formalized 
quantum operators has already been established and the focus is shifted on the ways in which they could be 
used in the design and analysis of quantum algorithms. The perspective that the quantum operators encode 
information to the phase space at their output, is not new to this work. In fact, this is the main element at the 
analysis of many quantum algorithms [3, 4]. Similarly to the case with the used from Grover common single 
qubit operator, this encoding and decoding is treated usually on a suitable basis, and it is not necessary to 
become an integral part of the result of the operator. The formalized operator can be used for the strict 
determination of the encoding and decoding behavior of elementary and complex operators. From there the 
coding and decoding are transformed into a rule; all the operators encode information for states on which they 
act on the phase of the state, which derives from their application. This encoding is expressed in terms of the 
Boolean functions, well-established area from the classical calculations. 
 
2. PHASE ENCODING 

The single qubit operators extract their encoding functions from the set of the single-byte Boolean functions. 
The set 𝐵1 is equal to {𝑓|𝑓 ∶ 𝔹 ↦ 𝔹} = {ID, NOT, ZERO, ONE}, where 
𝐼𝐷:𝑏 → 𝑏 
𝑁𝑂𝑇:𝑏 → 𝑏� 
𝑍𝐸𝑅𝑂:𝑏 → 0 
𝑂𝑁𝐸:𝑏 → 1  
Three binary axes can logically formalize the space of the single qubit, basis operators with real values: 
 The parameter of the global phase γ determines whether a given gate is a combination of ±I and ±N or ±Z 

and ±X. 
 The parameter of the phase of identity ι determines the phase of the operator for identity. 
 The parameter of the phase of negation η determines the phase of the operator for negation. 

First will be defined functions, which connect the logical phase parameters with the more structural 
formalization of the classes for identity and negation Id and Neg.  For the achievement of this objective let's 
𝛾 = 0 be the combination of the operators, and 𝜄 = 0 and  𝜂 = 0 indicate the positive phase respectively for the 
operators for identity and negation. This leads to the next enumeration, based on the 𝛾𝜄𝜂. 
000 → 𝐼 +𝑁   100 → 𝑍 + 𝑋 
001 → 𝐼 −𝑁   101 → 𝑍 −𝑋 
010 → −𝐼 +𝑁   110 → −𝑍 + 𝑋 
011 → −𝐼 −𝑁   111 → −𝑍 −𝑋 
With this allocation of space, it is possible to be defined functions, which connect the enumeration based on the 
logical parameters with the parameters of the function Id and Neg.  

Definition 1 The parameters (𝛾, 𝜄) are connected with (𝜄, 𝛾 ⨁ 𝜄 ) through the function 𝔗𝛾𝜂 = 𝐼𝑑𝑖(𝛾 ⨁ 𝜄 ), defined as  
𝔗00 = 𝐼𝑑00 = 𝐼 
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𝔗01 = 𝐼𝑑11 = −𝐼 
𝔗10 = 𝐼𝑑01 = 𝑍 
𝔗11 = 𝐼𝑑10 = −𝑍       (2) 
 
Definition 2 The parameters (𝛾, 𝜂) are connected with ((𝛾⨁𝜂������),𝜂) through the function 𝒩𝛾𝜂 = 𝑁𝑒𝑔(𝛾⨁𝜂������)𝜂 , defined 
as 
𝒩00 = 𝑁𝑒𝑔10 = 𝑁 
𝒩01 = 𝑁𝑒𝑔01 = −𝑁 
𝒩10 = 𝑁𝑒𝑔00 = 𝑋 
𝒩11 = 𝑁𝑒𝑔11 = −𝑋       (3) 
 
Both functions provide the possibility for defining the desired connection with the arguments Id and Neg.  
𝛾𝜄𝜂 = �𝔗𝛾𝜄,𝑁𝑒𝑔𝛾𝜂�       (4) 
 
If 𝒰1 is the space of unitary operators of the two-dimensional Hilbert space above ℝ and ℝ[0,1] is the 
interval[0,1]. It is defined 𝑈 ∶ ℝ[0,1] × 𝔹3 → 𝒰1 through: 
𝑈(𝛼, 𝛾𝜄𝜂) =  √𝛼𝔗𝛾𝜄 + √1− 𝛼𝒩𝛾𝜂      (5) 
 
For 𝑥 ∈ 𝔹, the action of the formalized operator 𝑈(𝛼,𝛾𝜄𝜂) of |𝑥⟩ is 
𝑈(𝛼, 𝛾𝜄𝜂)�𝑥〉 = √𝑎𝔗𝛾𝜄�𝑥〉+ √1 − 𝑎𝒩𝛾𝜄|�̅�〉     (6) 
 
Since 𝔗 and 𝒩 give basis operators, which at most should introduce a phase change to |𝑥⟩ and |�̅�⟩ it is possible 
to be indicated their influences as phase functions of the form (−1)𝑓(𝑥), where 𝑓 ∈ ℬ1. 
 
The phase functions for I and -I obviously are respectively ZERO and ONE, since they apply changes on the 
global phase. In the case of Z and -Z it is noted that the presented phase changes are balanced through all input 
/ output pairs, and not through constants. 
Z|0〉 =|0〉 
Z|1〉 = −|1〉 
-Z|0〉 = −|0〉 
-Z|1〉 =|1〉 
 
From the phase influences, represented by Z and -Z, it follows that the phase function, corresponding to Z, is ID, 
with its dual NOT, corresponding to -Z. From here the next connection from 𝛾𝜄 to ℬ1 determines the phase 
functions, based on the parameters of the phase: 

𝛾𝜄 → ℬ1 �

𝑍𝐸𝑅𝑂  𝛾𝜄 = 00
𝑂𝑁𝐸   𝛾𝜄 = 01
𝐼𝐷       𝛾𝜄 = 10
𝑁𝑂𝑇    𝛾𝜄 = 11

    (7) 

 
Similarly to the case with ±𝐼, the phase functions for X and -X are respectively constants ZERO and ONE due to 
global phase shifts. A research for the influence of N and –N of the phase of the result reveals the same balanced 
model as Z and -Z; the positive phase operator corresponds to ID, while the negative - corresponds to NOT.  
N|0〉 =|1〉 
N|1〉 = −|0〉 
-N|0〉 = −|1〉 
-N|1〉 =|0〉 
 
This leads to a connection for 𝛾𝜂, which is similar to that one for 𝛾𝜄. In this case, when 𝛾 = 0, the functions are 
in the set BAL, and when 𝛾 = 1, they are in the set CONST.  This is opposite of the connection for the operators 
in 𝔗. For 𝛾𝜂 

𝛾𝜂 → ℬ1 �

𝐼𝐷       𝛾𝜂 = 00
𝑁𝑂𝑇   𝛾𝜂 = 01
𝑍𝐸𝑅   𝛾𝜂 = 10
𝑂𝑁𝐸    𝛾𝜂 = 11

    (8) 

It is now possible to be defined an encoding function ℰ, connecting 𝛾𝜄𝜂 ∈ 𝔹3 with the pairs of the functions in 
ℬ1. Subscripts are used to indicate the specific functions within the pair. 
 
Phase coding functions of single qubit operators 
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ℰ(𝛾𝜄𝜂) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

(𝑍𝐸𝑅𝑂, 𝐼𝐷)       𝛾𝜄𝜂 = 000
(𝑍𝐸𝑅𝑂,𝑁𝑂𝑇)   𝛾𝜄𝜂 = 001
(𝑂𝑁𝐸, 𝐼𝐷)       𝛾𝜄𝜂 = 010
(𝑂𝑁𝐸,𝑁𝑂𝑇)  𝛾𝜄𝜂 = 011
(𝐼𝐷,𝑍𝐸𝑅𝑂)    𝛾𝜄𝜂 = 100
(𝐼𝐷,𝑂𝑁𝐸)      𝛾𝜄𝜂 = 001
(𝑁𝑂𝑇,𝑍𝐸𝑅𝑂) 𝛾𝜄𝜂 = 110
(𝑁𝑂𝑇,𝑂𝑁𝐸)  𝛾𝜄𝜂 = 111

    (9) 

 
For ℰ(0) the expression ℰ(0)0 designates the function ZERO, and ℰ(0)1 – ID. Perhaps the most interesting 
feature of ℰ is that it connects 𝔹3 with the operators in (𝐵𝐴𝐿 × 𝐶𝑂𝑁𝑆𝑇) ∪ (𝐶𝑂𝑁𝑆𝑇× 𝐵𝐴𝐿), and not ℬ1 × ℬ1 
generally. With the help of these links can be determined the impact of the formalized operator on the basic 
state, without the explicitly calling up the basic matrices. 

𝑈(𝛼, 𝛾𝜄𝜂)�𝑥〉 =  −1𝜀(𝛾𝜄𝜂)0(𝑥)√𝑎�𝑥〉+ −1𝜀(𝛾𝜄𝜂)1(𝑥)√1− 𝑎|�̅�〉   (10) 

Thus the application of an operator 𝐴 = 𝑈(𝛼, 𝛾𝜄𝜂) to basis |𝑥⟩ encodes the function ℰ(𝛾𝜄𝜂)⨁𝑦(𝑥) to the phase of 
⟨𝑦|𝐴|𝑥⟩. In respect of the exact input-output pairs, 

⟨𝑥|𝐴|𝑥⟩ = −1𝜀(𝛾𝜄𝜂)0(𝑥)√𝑎 

⟨�̅�|𝐴|𝑥⟩ = −1𝜀(𝛾𝜄𝜂)1(𝑥)√1 − 𝑎   (11) 

The formula, based on encoding, given in equation 10 leads to a precise idea for the act of phase encoding. First, 
the phase encoding is a feature relative to basic states, and not states as a whole.  The state, which is the result of 
the application of an operator to the basic state, carries in its phase information for the initial basic state. When 
considering the application of an operator to a superposition of the basic state, the encoding, which is obtained, 
is a set of information for non-null basic amplitude states available in the initial state. 
 
3. COMPOSITION, INTERFERENCE AND PHASE DECODING 

If the phase encoding is the flow of information from the amplitude state to the phase state, then the decoding 
is the reverse process. For a better understanding what the decoding of information from a phase space 
represents and how such decoding might occur, it is good to be examined how the phase encoding functions 
are composed, as their respective operators are composed in a circuit. 
 

a. Interference 
If we consider the consistent application of two operators on the basic state |𝑥⟩. The first operator encodes 
ℰ(𝛾𝜄𝜂) into the phase of |𝑥⟩ and |�̅�⟩, while creating a superposition of both states, based on the value of 𝛼. If 
𝐴 = 𝑈(𝛼𝐴, (𝛾𝜄𝜂)𝐴) is a single qubit operator with a basis 𝑥 ∈ 𝔹. 
⟨𝑥|𝐴|𝑥⟩ = (−1)𝜀�𝛾𝜄𝜂𝐴�0(𝑥)�𝑎𝐴 
⟨�̅�|𝐴|𝑥⟩ = (−1)𝜀�𝛾𝜄𝜂𝐴�1(𝑥)�1− 𝑎𝐴   (11) 
The application of the second operator then affects the state, created by the first operator. These interference 
patterns generate the probability amplitudes ⟨𝑥|𝐵𝐴|𝑥⟩ and ⟨�̅�|𝐵𝐴|𝑥⟩. 

1. ⟨𝑥|𝐴|𝑥⟩ with ⟨𝑥|𝐵|𝑥⟩ and ⟨𝑥|𝐵|�̅�⟩ produces the probability amplitude ⟨𝑥|𝐵𝐴|𝑥⟩ 
2. ⟨�̅�|𝐴|𝑥⟩ with ⟨�̅�|𝐵|�̅�⟩ and ⟨�̅�|𝐵|𝑥⟩ corresponds to the probability amplitude ⟨�̅�|𝐵𝐴|𝑥⟩. 

 
It is possible to evaluate these interference patterns with respect to the interaction of the encoded information 
on the basic states, respectively, by A and B. If operator  
𝐵 = 𝑈(𝑎𝐵 , (𝛾𝜄𝜂)𝐵) 
⟨𝑥|𝐵|𝑥⟩ = (−1)𝜀�(𝛾𝜄𝜂)𝐵�0(𝑥)�𝑎𝐵 
⟨�̅�|𝐵|𝑥⟩ = (−1)𝜀�(𝛾𝜄𝜂)𝐵�1(𝑥)�1− 𝑎𝐵  
⟨𝑥|𝐵|�̅�⟩ = (−1)𝜀�(𝛾𝜄𝜂)𝐵�1(𝑥�)�1− 𝑎𝐵  
⟨�̅�|𝐵|�̅�⟩ = (−1)𝜀�(𝛾𝜄𝜂)𝐵�0(𝑥�)√𝑎𝐵       (12) 
Given the behaviors of the basic levels of B and A, listed in equations 11 and 12, it is possible to be established 
interference patterns of the basic level, which are formed for 𝐵°𝐴. 
⟨𝑥|𝐵𝐴|𝑥⟩ = ⟨𝑥|𝐵|𝑥⟩⟨𝑥|𝐴|𝑥⟩ + ⟨𝑥|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩ 
⟨�̅�|𝐵𝐴|𝑥⟩ = ⟨�̅�|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩ + ⟨𝑥|𝐴|𝑥⟩⟨�̅�|𝐵|𝑥⟩     (13) 
In order to be understood the interference in terms of the phase functions, it is useful to first note that 
expressions like ⟨𝑥|𝐵|𝑥⟩ ⟨𝑥|𝐴|𝑥⟩ take on the form (−1)𝑓⨁𝑔𝑎𝑏, where 𝑓 and 𝑔 are functions in ℬ1 and 
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0 ≤ 𝑎,𝑏 ≤ 1. When these forms are added, the form of the interference is determined by the properties of the 
phase functions. Now consider the different interference interactions of B with A. 
⟨𝑥|𝐵|𝑥⟩⟨𝑥|𝐴|𝑥⟩�= −1𝜀((𝛾𝜄𝜂)𝐵)0(𝑥)⨁𝜀((𝛾𝜄𝜂)𝐴)0(𝑥)�𝑎𝐵�𝑎𝐴� 
⟨𝑥|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩�= −1𝜀((𝛾𝜄𝜂)𝐵)1(𝑥̅)⨁𝜀((𝛾𝜄𝜂)𝐴)1(𝑥)�1− 𝑎𝐴�1− 𝑎𝐵� 
⟨�̅�|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩�= −1𝜀((𝛾𝜄𝜂)𝐵)0(𝑥̅)⨁𝜀((𝛾𝜄𝜂)𝐴)1(𝑥)�1− 𝑎𝐴�𝑎𝐵� 
⟨𝑥|𝐵|𝑥⟩⟨�̅�|𝐴|𝑥⟩�= −1𝜀((𝛾𝜄𝜂)𝐴)0(𝑥̅)⨁𝜀((𝛾𝜄𝜂)𝐵)1(𝑥)�1− 𝑎𝐵√𝑎𝐴�  (14) 
Interference occurs between the two operator and is defined relative to a basis. 
 
Definition 3 If A and B are single qubit operators.  The operator B constructively interferes with A, if 
|⟨𝑥|𝐵𝐴|𝑥⟩| > |⟨𝑥|𝐴|𝑥⟩|. 
 
Definition 4 If A and B are single qubit operators.  The operator B destructively interferes with A, if |⟨𝑥|𝐵𝐴|𝑥⟩| <
|⟨𝑥|𝐴|𝑥⟩|. 
It is obvious that when dealing with a single qubit, if the probability amplitude relative to a basis increases, 
then the other probability amplitude must be decreased. In other words, when a constructive interference 
occurs relative to some basis |𝑥⟩, then there should be also a destructive interference relative to |�̅�⟩. In the n 
qubit space it must be true that when one probability amplitude is increased, at least one another must be 
decreased. Is not mandatory the decreasing amplitude to be that one of the logical negation of the state, whose 
probability amplitude has increased. Generally speaking, most of the operators will create some form of 
interference.  
 

b. Decoding 
Phase decoding is the name given to a set of well-defined interference patterns. For example, the action of the 
operator A can be seen as encoding identifying information for the state |𝑥⟩ during the phase of А|𝑥⟩. If 
operator В is a decoder of A, then it will effectively read that the encoded information acts on the amplitudes of 
А|𝑥⟩. Logically, a single qubit decoder might decode information in the phase space in one of two ways. 

1. Identifies the encoded state in such way that BA|𝑥⟩ and |𝑥⟩ are at least extensionally equivalent. 
Thus, the combined effect of ВА is like an operator in Ех𝑡1. 

2. Negates the encoded state in such way that ВА|𝑥⟩ is at least extensionally negation of |𝑥⟩. Thus the 
combined effect of ВА is like an operator in 𝑁ех𝑡1. The decoding, as well as all forms of 
interference, can be examined in relation to the understanding for the interaction and relationship 
between the encoding, performed by the operators in question. 

 
Identity decoders 
Identity decoder B of operator А introduces an interference pattern such that a previously encoded state is 
created, with a phase change. This form of interference can be understood in terms of the composition of 
operators. In the space of the single qubit operators extensional identity decoder acts together with the 
decoded operator, to create either the basis operators Z, or - Z.  Generally speaking the extensional identity 
decoders might introduce phase changes to an arbitrary basis. In other words, they can decode one basic state 
such that ВА|𝑥⟩ = |𝑥⟩, and another - ВА|𝑦⟩ = −|𝑦⟩.  
Corollary 1 If A and B are single qubit, formalized operators.  Then ВА is an identity decoder only if  
𝑎𝐴 = 𝑎𝐵    и    𝛾𝐵⨁(𝜄𝐴 ⨁ 𝜂𝐵 )⨁(𝜄𝐵 ⨁ 𝜂𝐵 ) = 1 
 
Proof. First, it should be noted that, the product ВА might be simplified  
𝐵𝐴 = ��𝑎𝐵𝔗(𝛾𝜄)𝐵 +�1− 𝑎𝐵𝒩(𝛾𝜂)𝐵� (�𝑎𝐴𝔗(𝛾𝜄)𝐴 + �1− 𝑎𝐴𝒩(𝛾𝜂)𝐴) 
 
�𝑎𝐵𝑎𝐴𝔗(𝛾𝐵 ⨁𝛾𝐴 )(𝜄𝐵 ⨁𝜄𝐴 ) +�𝑎𝐵(1− 𝑎𝐴)𝒩(𝛾𝐵 ⨁𝛾𝐴 )(𝛾𝐵 ⨁𝜄𝐵 ⨁𝜂𝐴 ) 
 

+�(1− 𝑎𝐴)𝑎𝐴𝒩(𝛾𝐵 ⨁ 𝛾𝐴 )(𝜂𝐵 ⨁𝜄𝐴 ) +�(1− 𝑎𝐵)(1− 𝑎𝐴)𝔗(𝛾𝐵 ⨁ 𝛾𝐴 )(𝛾𝐵 �����⨁𝜂𝐴 ⨁𝜂𝐵 ) 
 
Furthermore, the following are equivalent, 
𝛾𝐵 (𝜄𝐴 ⨁𝜂𝐵)⨁(𝜄𝐵 ⨁𝜂𝐵) = 1 
 
𝛾𝐵⨁𝜂𝐵⨁𝜂𝐴��������������� =  (𝜄𝐴 ⨁ 𝜄𝐵) 
 
𝛾𝐵⨁ 𝜄𝐵⨁ 𝜂𝐴 =  (𝜄𝐴 ⨁ 𝜂𝐵���������) 
 
All operators for identity and negation have the same global phase 𝛾𝐴⨁ 𝛾𝐵. In order for the above to be true, the 
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operators for negation must be neutralized, i.e. to have different phases, and the operators for identity must be 
combined, i.e. to have the same phase. Thus 
𝜄𝐵⨁𝜄𝐴 = 𝛾𝐵���⨁𝜂𝐴⨁𝜂𝐵 и 𝛾𝐵⨁ 𝜄𝐵⨁ 𝜂𝐴  ≠ 𝜂𝐵⨁𝑖𝐴 
These two corollaries are equivalent to each other and to 
𝛾𝐵 ⨁(𝜄𝐴 ⨁𝜂𝐵)⨁(𝜄𝐵 ⨁𝜂𝐵) = 1 
And, finally, taking into account the restrictions on the amplitude parameters, it is clear that 𝛼𝐴 = 𝛼𝐵 . Thus, 
when  
𝐵𝐴 ∈ 𝔗𝑦𝑥 follows that 𝛼𝐴 = 𝛼𝐵  and 𝛾𝐵 ⨁(𝜄𝐴 ⨁𝜂𝐵)⨁(𝜄𝐵 ⨁𝜂𝐵) = 1 
 
Formal consequence 1 If operator B is identity decoder of A, then  
𝐵𝐴 =  𝔗(𝛾𝐴⨁𝛾𝐵)(𝐼𝐴⨁𝐼𝐵)  
 
Proof. Follows from Corollary 1. 
By this general formula it is possible to be determined a clearer picture of the decoding and the relationship 
between the encoded and decoded states. Ultimately, the understanding of the conditions, under which the 
identity decoding occurs, leads to a means for connecting an operator to its identity decoders and vice versa. 
 
Corollary 2 If operator B = 𝑈(𝛼𝐵 , (𝛾𝜄𝜂)𝐵) is identity decoder of А = 𝑈(𝛼𝐴, (𝛾𝜄𝜂)𝐴). Then, if 𝛼𝐴 = 𝛼𝐵  

𝐵𝐴 = �

𝐼 𝛾𝐵 = 𝛾𝐴 = 0, 𝑖𝐴 = 𝜂𝐵 ,𝜂𝐴 ≠ 𝑖𝐵  или 𝛾𝐵 = 𝛾𝐴 = 1, 𝑖𝐴 = 𝜂𝐵 , 𝜂𝐴 = 𝑖𝐵
−𝐼 𝛾𝐵 = 𝛾𝐴 = 0, 𝑖𝐴 ≠ 𝜂𝐵 ,𝜂𝐴 = 𝑖𝐵  или 𝛾𝐵 = 𝛾𝐴 = 1, 𝑖𝐴 ≠ 𝜂𝐵 , 𝜂𝐴 ≠ 𝑖𝐵

       𝑍 𝛾𝐴 = 0,𝛾𝐵 = 1, 𝑖𝐴 = 𝜂𝐵 ,𝜂𝐴 = 𝑖𝐵  или 𝛾𝐴 = 1,𝛾𝐵 = 0, 𝑖𝐴 = 𝜂𝐵 ,𝜂𝐴 ≠ 𝑖𝐵
   −𝑍 𝛾𝐴 = 0,𝛾𝐵 = 1, 𝑖𝐴 ≠ 𝜂𝐵 ,𝜂𝐴 ≠ 𝑖𝐵  или 𝛾𝐴 = 1,𝛾𝐵 = 0, 𝑖𝐴 ≠ 𝜂𝐵 ,𝜂𝐴 = 𝑖𝐵

  

   (3.2.13) 
Proof. Follows from Corollary 1 and consequence 1. 
 
Corollary 2 allows to be defined specifically the phases of the identity decoders for a given operator. 
 

 I -I Z -Z 
(𝛾𝜄𝜂)𝐴 𝛼𝐴 = 𝛼𝐵 

000 001 010 100 111 
001 000 011 101 110 
010 011 000 110 101 
011 010 001 111 100 
100 100 110 001 010 
101 101 111 000 011 
110 110 100 011 000 
111 111 101 010 001 

Table 1: The identity decoding by phase number γιη 
 
Table 1 shows the conditions for identity decoding with respect to the operator parameters. In all cases, the 
amplitude of the decoder must match that one of the operator, which it decodes. Each row of the table 
corresponds to the operator, which is being decoded, and the value in the first column is that one of its phase. 
The remaining columns give the desired phase for each decoder by the result of the combined action of decoder 
and encoder. For example, if 𝐴 = 𝑈(𝛼, 101) should be decoded identically, then row 101 lists the operators, 
which will carry out this decoding. More precisely, it can be seen that 𝑈(𝛼, 000)°𝑈(𝛼, 101) = 𝑍 since phase 000 
is listed as a Z decoder for phase 101. 
 
Negation decoders 
The development of the negation decoders more or less follows the line of the identity decoders. The negation 
decoders create states, which are extensional negations of the encoded information. The determination of the 
exact formalization of the negation decoders for single qubit operators is really simple. 
 
Corollary 3 If the operators A and B are single qubit, formalized operators.  Then 𝐵𝐴 is the negation decoder only 
if 𝛼𝐴 = 1 − 𝛼𝐵  and 𝛾𝐵⨁(𝜄𝐴⨁𝜂𝐵)⨁(𝜄𝐵⨁𝜂𝐴) = 0. 
 
Proof. First, the product BA can be simplified, 
𝐵𝐴 = ��𝛼𝐵𝔗(𝑦𝑖)𝐵 + �1− 𝛼𝐵𝒩(𝑦𝜂)𝐵���𝛼𝐴𝔗(𝑦𝑖)𝐴 + �1− 𝛼𝐴𝒩(𝑦𝜂)𝐴� 
= �𝛼𝐵𝛼𝐴𝔗(𝑦𝐵⨁𝑦𝐴)⨁(𝜄𝐵⨁𝑙𝐴) + �𝛼𝐵(1− 𝛼𝐴)𝒩(𝑦𝐵⨁𝑦𝐴)⨁(𝑦𝐵⨁𝜄𝐵⨁𝜂𝐴) +  
�(1− 𝛼𝐵)𝛼𝐴𝒩(𝑦𝐵⨁𝑦𝐴)⨁(𝜂𝐵⨁𝑙𝐴) + �(1− 𝛼𝐵)(1− 𝛼𝐴)𝔗(𝑦𝐴⨁𝑦𝐵)⨁(𝑦𝐵����⨁𝜂𝐴⨁𝜂𝐵) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015                                                               1362 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

 
The following are equivalent, 
and 𝛾𝐵⨁(𝜄𝐴⨁𝜂𝐵)⨁(𝜄𝐵⨁𝜂𝐴) = 0  
𝛾𝐵⨁𝜄𝐵⨁𝜂𝐴 = (𝜂𝐴⨁𝜄𝐵)   
𝛾𝐵⨁𝜄𝐴 ≠ (𝑦𝐵���⨁𝜂𝐴⨁𝜂𝐵) 
 
If it is assumed that 
𝛼𝐴 = (1− 𝛼𝐵) и and 𝛾𝐵⨁(𝜄𝐴⨁𝜂𝐵)⨁(𝜄𝐵⨁𝜂𝐴) = 0 
then  
𝐵𝐴 = �(1− 𝑎𝐴)𝑎𝐴𝔗(𝛾𝐵⨁𝛾𝐴)(𝛾𝐵⨁𝜂𝐴⨁𝜂𝐵) + (1− 𝑎𝐴)𝒩(𝛾𝐵⨁𝛾𝐴)(𝜂𝐴⨁𝑖𝐵) + 
𝑎𝐴𝒩(𝛾𝐵⨁𝛾𝐴)(𝜂𝐵⨁𝑖𝐴) + �𝑎𝐴(1− 𝑎𝐴)𝔗(𝛾𝐴⨁𝛾𝐵)(𝛾𝐵����⨁𝜂𝐴⨁𝜂𝐵) 
=  𝒩(𝛾𝐵⨁𝛾𝐴)(𝜂𝐵⨁𝑖𝐴) 
=  𝒩(𝛾𝐵⨁𝛾𝐴) (𝛾𝐵⨁𝑖𝐵⨁𝜂𝐴)        (15) 
 
Then it must be true that 𝐵𝐴 = 𝑁𝑦𝑥 for some 𝑦𝑥 ∈ {0,1}2.  
All operators for identity and negation have the same global phase 𝛾𝐴⨁ 𝛾𝐵. In order for the above to be true, the 
operators for identity must be neutralized, i.e. to have different phases, and the operators for negation must be 
combined, i.e. to have the same phase. Thus 
𝛾𝐵⨁𝜄𝐴 ≠ (𝑦𝐵���⨁𝜂𝐴⨁𝜂𝐵) и 𝛾𝐵⨁𝜄𝐵⨁𝜂𝐴 = (𝜂𝐴⨁𝜄𝐵)   
These two corollaries are equivalent to each other and to 
𝛾𝐵⨁(𝜄𝐴⨁𝜂𝐵)⨁(𝜄𝐵⨁𝜂𝐴) = 0  
And, finally, taking into account the restrictions on the amplitude parameters, it is clear that 𝛼𝐴 = 1 − 𝛼𝐵 . Thus, 
when 𝐵𝐴 ∈ 𝒩𝑦𝑥  
follows that 𝛼𝐴 = 1 − 𝛼𝐵  and 
𝛾𝐵⨁(𝜄𝐴⨁𝜂𝐵)⨁(𝜄𝐵⨁𝜂𝐴) = 0  
This leads to a new common formula for the negation decoders. 
 
Formal consequence 2 If operator B is negation decoder of A. Then  
𝐵𝐴 =  𝒩(𝛾𝐵⨁𝛾𝐴)(𝜂𝐵⨁𝐼𝐴)  
Proof. Follows from equation 15 in Corollary 3. 
 
Corollary 4 If operator В = 𝑈(𝛼𝐵 , (𝛾𝜄𝜂)𝐵) negation decoder of А = 𝑈(𝛼𝐴, (𝛾𝜄𝜂)𝐴). Then, if 𝛼𝐵 = 1− 𝛼𝐴. 
 

𝐵𝐴 = �

   𝑁 𝛾𝐵 = 𝛾𝐴 = 0, 𝑖𝐴 = 𝜂𝐵 ,𝜂𝐴 = 𝑖𝐵  или 𝛾𝐵 = 𝛾𝐴 = 1, 𝑖𝐴 = 𝜂𝐵 ,𝜂𝐴 ≠ 𝑖𝐵
−𝑁 𝛾𝐵 = 𝛾𝐴 = 0, 𝑖𝐴 ≠ 𝜂𝐵 ,𝜂𝐴 ≠ 𝑖𝐵  или 𝛾𝐵 = 𝛾𝐴 = 1, 𝑖𝐴 ≠ 𝜂𝐵 ,𝜂𝐴 = 𝑖𝐵

   𝑋 𝛾𝐴 = 0, 𝛾𝐵 = 1, 𝑖𝐴 = 𝜂𝐵 , 𝜂𝐴 ≠ 𝑖𝐵  или 𝛾𝐴 = 1, 𝛾𝐵 = 0, 𝑖𝐴 = 𝜂𝐵 , 𝜂𝐴 = 𝑖𝐵
−𝑋 𝛾𝐴 = 0, 𝛾𝐵 = 1, 𝑖𝐴 ≠ 𝜂𝐵 , 𝜂𝐴 = 𝑖𝐵  или 𝛾𝐴 = 1, 𝛾𝐵 = 0, 𝑖𝐴 ≠ 𝜂𝐵 , 𝜂𝐴 ≠ 𝑖𝐵

    (16) 

Proof. Follows from Corollary 2 and its consequence 2. 
The decoding connections may be outlined in terms of the phase numbers, as shown in table 2. 

 N -N X -X 
(𝛾𝜄𝜂)𝐴 𝛼𝐴 = 1 − 𝛼𝐵  

000 000 011 110 101 
001 010 001 100 111 
010 001 010 111 100 
011 011 000 101 110 
100 110 101 000 011 
101 100 111 010 001 
110 111 100 001 010 
111 101 110 011 000 

Table 2: The negation decoding by phase number γιη 
 

c. A new look at decoding 
Until now the decoding was limited to the conditions under which the two operators are combined in order to 
form a certain basis operator. The requirements for the parameters are shown in table 3  

 I Z N -X 
(𝛾𝜄𝜂)𝐴 𝛼𝐴 = 𝛼𝐵  𝛼𝐴 = 1 − 𝛼𝐵 

000 001 100 000 110 
001 000 101 010 100 
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010 011 110 001 111 
011 010 111 011 101 
100 100 001 110 000 
101 101 000 100 010 
110 110 011 111 001 
111 111 010 101 011 

Table 3 The decoding operators 
 
More common structure of the decoding operators occurs when calling the main matrix formulation of the 
operators. 
 
Corollary 5 If operator 𝑈 ∈ {±𝐼, ±𝑍, ±𝑋, ±𝑁} and A is any single qubit, formalized operator.  If 𝑈 ∈ {±𝐼, ±𝑍}, 
then 𝑈𝐴† is an identity decoder of A. If 𝑈 ∈ {±𝑁, ±𝑋}, then 𝑈𝐴† is a negation decoder of A. 
Proof. For all single qubit operators, А, 𝐴†𝐴 = 𝐼. Therefore (𝑈𝐴†)𝐴 = 𝑈. If 𝑈 ∈ Ех𝑡1, then (𝑈𝐴†)𝐴 ∈ Ех𝑡1 and 
thus 𝑈𝐴† is an identity decoder of A. If 𝑈 ∈ 𝑁ех𝑡1, then (𝑈𝐴†)𝐴 ∈ 𝑁ех𝑡1 and thus 𝑈𝐴† is a negation decoder of 
A. Corollary 5 summarizes the single qubit decoders and allows the reconstruction of the previous results. 
Furthermore, it provides the internal necessity for development of a unified system for consideration of 
decoding operators for operators of any size. 

 I Z N -X 
ℰ(𝛾𝜄𝜂)𝐴 𝛼𝐴 = 𝛼𝐵  𝛼𝐴 = 1− 𝛼𝐵 

(ZERO,ID) (ZERO,NOT) (ID,ZERO) (ZERO,ID) (NOT,ZERO) 
(ZERO,NOT) (ZERO,ID) (ID,ONE) (ONE,ID) (ID,ZERO) 
(ID,ZERO) (ID,ZERO) (ZERO,NOT) (NOT,ZERO) (ZERO,ID) 
(ID,ONE) (ID,ONE) (ZERO,ID) (ID,ZERO) (ONE,ID) 

Table 4 Decoding by encoding function 𝓔 
In Table 4 is condensed the decoding table with phases 000, 001, 100 and 101, and are reformulated the 
operators with respect to their encoding functions. The remaining operators are simply negations of those four 
and their encoding functions. The functions, which decode them, can be defined by reversing the functions for 
their negation to the complementary function. 
To be consider the decoding with respect to the interaction between encoding functions, it is important to be 
know where and how these encoding functions interact. If at first is reviewed the interference, generated 
between the operators A and В. 

⟨𝑥|𝐴𝐵|𝑥〉 =  (−1)𝜀((𝛾𝜄𝜂)𝐵)0(𝑥)⨁𝜀((𝛾𝜄𝜂)𝐴)0(𝑥)�𝑎𝐴𝑎𝐵  +  (−1)𝜀((𝛾𝜄𝜂)𝐵)1(𝑥̅)⨁𝜀((𝛾𝜄𝜂)𝐴)1�𝑥𝑡𝐵��(1− 𝑎𝐴)(1− 𝑎𝐵) 
⟨�̅�|𝐴𝐵|𝑥〉 =  (−1)𝜀((𝛾𝜄𝜂)𝐵)0(𝑥̅)⨁𝜀((𝛾𝜄𝜂)𝐴)1(𝑥)�(1− 𝑎𝐴)𝑎𝐵  +  (−1)𝜀((𝛾𝜄𝜂)𝐵)1(𝑥)⨁𝜀((𝛾𝜄𝜂)𝐴)0�𝑥𝑡𝐵��𝑎𝐴(1− 𝑎𝐵) 

When B is a decoder of A, the amplitudes of the two members in both sums equivalent and the decoding is 
solely dependent on the relationship between the functions 
𝜀((𝛾𝜄𝜂)𝐵)0⨁𝜀((𝛾𝜄𝜂)𝐴)0 и  (𝜀((𝛾𝜄𝜂)𝐵)1 ∘ 𝑁𝑂𝑇)⨁𝜀((𝛾𝜄𝜂)𝐴)1 
(𝜀((𝛾𝜄𝜂)𝐵)0 ∘ 𝑁𝑂𝑇) ⨁ 𝜀((𝛾𝜄𝜂)𝐴)1 и 𝜀((𝛾𝜄𝜂)𝐵)1 ⨁ 𝜀((𝛾𝜄𝜂)𝐴)0 
When an identical decoding occurs, then the encoding functions are complementary in |𝑥⟩ and are neutralized 
in |�̅�⟩. The opposite is true for the negation decoding. Informatively may be examined, how these interference 
patterns are combined. When operator B decodes operator А, then their encoding functions combine to 
determine the phase / sign of the members, given above. Four of these functions can be represented as a matrix 
C 
 

𝐶 = �
𝜀((𝛾𝜄𝜂)𝐵)0⨁𝜀((𝛾𝜄𝜂)𝐴)0 (𝜀((𝛾𝜄𝜂)𝐵)1 ∘ 𝑁𝑂𝑇)⨁𝜀((𝛾𝜄𝜂)𝐴)1

(𝜀((𝛾𝜄𝜂)𝐵)0 ∘ 𝑁𝑂𝑇) ⨁ 𝜀((𝛾𝜄𝜂)𝐴)1 𝜀((𝛾𝜄𝜂)𝐵)1 ⨁ 𝜀((𝛾𝜄𝜂)𝐴)0
� 

 
where each function determines the phase of the members 
 

�⟨𝑥|𝐵|𝑥⟩⟨𝑥|𝐴|𝑥⟩ ⟨𝑥|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩
⟨�̅�|𝐵|�̅�⟩⟨�̅�|𝐴|𝑥⟩ ⟨�̅�|𝐵|𝑥⟩⟨𝑥|𝐴|𝑥⟩� 

 
 I Z 
(ZERO,ID) �ZERO ZERO

𝐼𝐷 𝑁𝑂𝑇 � � ID ID
𝑂𝑁𝐸 𝑍𝐸𝑅𝑂� 

(ZERO,NOT) �ZERO ZERO
𝑁𝑂𝑇 𝐼𝐷 � � ID ID

𝑍𝐸𝑅𝑂 𝑂𝑁𝐸� 

(ID,ZERO) �ZERO ZERO
𝑁𝑂𝑇 𝐼𝐷 � � ID ID

𝑍𝐸𝑅𝑂 𝑂𝑁𝐸� 
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(ID,ONE) �ZERO ZERO
𝐼𝐷 𝑁𝑂𝑇 � � ID ID

𝑂𝑁𝐸 𝑍𝐸𝑅𝑂� 

Table 5: Identity decoding patterns 
 
It can be easily checked that the decoding patterns for the negations of the basis operators is an complement of 
the patterns, given in Tables 5 and 6, i.e. the matrix, in which all operators have been replaced by their 
complement in ℬ1. 
 
 

 N X 
(ZERO,ID) �ZERO ONE

𝐼𝐷 𝐼𝐷 � � NOT ID
𝑍𝐸𝑅𝑂 𝑍𝐸𝑅𝑂� 

(ZERO,NOT) �ONE ZERO
𝐼𝐷 𝐼𝐷 � � ID NOT

𝑍𝐸𝑅𝑂 𝑍𝐸𝑅𝑂� 

(ID,ZERO) �ONE ZERO
𝐼𝐷 𝐼𝐷 � � ID NOT

𝑍𝐸𝑅𝑂 𝑍𝐸𝑅𝑂� 

(ID,ONE) �ZERO ONE
𝐼𝐷 𝐼𝐷 � � NOT ID

𝑍𝐸𝑅𝑂 𝑍𝐸𝑅𝑂� 

Table 6: Models of negation decoding 
 
The decoding patterns for the negations of the four operators, given above, are the same as their corresponding 
negations. For example, the pattern for the operator with a phase 011 is the same as that one of 000. The 
decoding patterns, given in Tables 5 and 6, allow it to be casted a glance, oriented to the encoding / decoding, 
to the interaction between the operators, as they are applied sequentially. Of particular importance is the 
result, which the residual encoding, left by the decoding, has on the subsequent operators. The residual 
encoding is the encoding / decoding presentation of the operator, to which is limited the combination of a 
decoder and the operator, which it decodes. For example, decoding to Z and N leaves the encoding ID(x) on the 
decoded states |𝑥⟩ and |�̅�⟩, as these two operators encode the function ID.  The overall effect of the encoding in 
the presence of a residual encoding can be handled, by first reducing the decoder and the operator for encoding 
to a suitable basis operator and then combining it with the next operator. This also highlights that residual 
encoding characterizes the result of applying an arbitrary non-basis operator after a basis operator. The basis 
operator would perform the same phase encoding, then the next operator encodes with respect to the encoding 
of the basis. 
If А = 𝑈(𝛼,𝛾𝜄𝜂), then 
 
𝐴�(−1)𝑓(𝑥)|𝑥〉� = (−1)𝑓(𝑥)𝐴|𝑥〉 
= (−1)𝑓(𝑥)⨁(𝛾𝜄𝜂)0(𝑥)√𝑎|𝑥〉+ (−1)𝑓(𝑥)⨁(𝛾𝜄𝜂)1(𝑥)�(1− 𝑎)|�̅�〉  (17) 
 
As seen in equation 17, operator A effectively performs the encoding of an operator with encoding function 
(𝜀(𝛾𝜄𝜂)0 ⨁ 𝑓, 𝜀(𝛾𝜄𝜂)1⨁ 𝑓) 
 
When the function f is the residual of a negation decoding, it should be considered that f is relative to negation 
of the encoded state. In other words, the residual functions, given in table 6 are not f from equation 17. If the 
residual function of the negation decoding is g, the resulting state is (−1)𝑔(𝑥)|�̅�⟩ = (−1)(𝑔 ∘ 𝑁𝑂𝑇)(𝑥̅)|�̅�⟩ and 
through equation 17 it is visible that operator А performs the encoding  
(𝜀(𝛾𝜄𝜂)0⨁(𝑔 ∘  𝑁𝑂𝑇)), 𝜀(𝛾𝜄𝜂)1⨁(𝑔 ∘  𝑁𝑂𝑇) 
 
 

4. ENCODING AND DECODING AT 𝛂 ∈ {𝟎,𝟏} 
The links between the encoding and decoding, discussed in the previous sections, have been developed with an 
eye to the operators with amplitude parameters, which are not strictly zero or non-null. When the amplitude 
parameter is zero (respectively one), it is fair to say that ℰ1, respectively ℰ0, is encoded to the negation 
(respectively the identity) of the input data. The zero amplitude of such state effectively "neutralizes" the 
encoding. Essentially, it would be wrong to be presented a state with zero amplitude as bearing any encoded 
information in its phase, as it actually has no phase. When are considered the operators themselves, the 
difference is not substantial. When assessing the information encoded to a certain state by a series of 
operators, it is important to be taken into account the lack of a phase change, which occurs at the application of 
operators with amplitude parameter 0 or 1. 
The function: 𝜀′:ℝ[0,1] × 𝔹3 → ℬ1 × ℬ1 provides a pair of encoding functions, which are aware of the amplitude. 
More precisely, 𝜀′(𝑎,𝛾𝜄𝜂) = 𝐸𝑎,𝛾𝜄𝜂 = (𝐸0

𝑎,𝛾𝜄𝜂,𝐸1
𝑎,𝛾𝜄𝜂) 
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Where 
𝐸0
𝑎,𝛾𝜄𝜂 = �𝜀(𝛾𝜄𝜂)0 0 ≤ 𝑎 ≤ 1

𝑍𝐸𝑅𝑂           𝑎 = 1
             𝐸1

𝑎,𝛾𝜄𝜂 = �𝜀(𝛾𝜄𝜂)1 0 ≤ 𝑎 ≤ 1
𝑍𝐸𝑅𝑂           𝑎 = 0

    (18) 

 
 
 
5. CONCLUSIONS 

This report describes how can be used formalized logic for phase encoding and decoding, in order to formalize 
the idea of encoding discrete information on the basic input states in the output phase of the operator. The 
approach of this system differs from previous discussions of phase encoding, making the encoding a substantial 
part of all operators, so that the correct encoded information can be determined from the parameters of the 
operators.  
 
The decoding is considered as a special case of interference with four different forms of decoding that reflect 
the classes of identity and negation operators discussed in the previous chapters. The identity decoders 
determine the state encoded in the phase space and reduce the output state to the encoded state. Corollary 1 
gives the requirements of the parameters for identity decoding. Its corollary 1 allows a reduction of the 
composition of an operator with its identical decoder to a basis operator only with regard to the operator 
parameters. The negation decoders negate the encoded state, leaving the state in the negation of the previous 
encoded state. Therefore, all forms of decoding can be strictly managed in terms of the operator parameters. 
This further leads to an increase in the level of abstraction. Decoding is also examined from the perspective of 
Boolean functions that perform encoding. The proposed system provides the means for addressing the 
decoding links with regard to the encoding functions; it also allows the determination of any residual encoded 
information after the decoding has happened. 
 
The proposed system provides the means for addressing the decoding links with regard to the encoding 
functions; it also allows the determination of any residual encoded information after the decoding has 
happened. In addition, it addresses, in terms of the Boolean encoding functions, the precise nature of the 
interference, which leads to a phase decoding. Then is researched the effect which the residual encoding has on 
the following operators. By developing, a perspective focused on the Boolean functions, for the phase space is 
built a level of abstraction beyond the "negative probabilities", allowing the interference to be addressed in 
terms of primitive Boolean functions.  
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